
International Journal of New Media Studies ISSN: 2394-4331

Volume 4 Issue 2, Julyy-December, 2017

104

Built-in Testing for Component-Based Software

Development

Hitali Shah

Institute of Technology, Nirma University

ABSTRACT

When Component based software development process

is employed, there is a need to test the prefabricated

components after integrating them with the existing

software system. The components available are already

tested but the interfaces connecting them are not. This

paper focuses on how different test cases and test

interfaces can be embedded within components so that

when they are integrated they can be easily tested. The

benefits for using built-in testing for component based

software development process is discussed. Built-in

contract testing is studied further and its various

terminologies are mentioned.

Keywords—Built-in Testing, testing, COTS,

Component-based software development

INTRODUCTION

Component Based software development is used in

majority when it comes to excel the software development

process. The implicit assumption when using COTS is that

time required to deploy and test the software system would

less time consuming compared to the traditional software

development process. There may occur a condition when

the component may not work as expected. In such cases a

lot of time may be consumed in acceptance and integration

testing which is not preferable. Moreover, the COTS are

tested on different servers and when they are deployed on

client server there can be run-time errors. While integrating

COTS with the existing software system could also

generate defects. Testing these components fabricated by

third-party companies may take a lot of time and energy.

Built-in testing is method of testing in which code is added

within the component that is used at run-time to test that

component. The developer adds test cases and test

interfaces while developing the component. They basically

work on the approach of “plug-and-play” such that when

the COTS are deployed the built-in tests could validate the

environment and work as they are expected to. Built-in

testing thereby would reduce the time and cost required for

integration and regression testing.

This paper discusses the reasons for using built-in testing

in component-based software development. Following

sections would discuss the various methods of using built-

in testing in integration and regression testing. Moreover,

the use of built-in testing in maintenance of software

system is also discussed.

Challenges In Component-Based Software Testing

Different testing methods are used for component based

software testing. Some of the approaches are mentioned in

[3] . One of the approach is using testable beans which is

mentioned in [1].Testable beans use Enterprise JavaBeans

framework. These testable beans can be extended to

provide support for Built-in Testing. When deploying built-

in testing within prefabricated components there are

various research questions that arise. Here some of the

questions are addressed.

Why to use Built-in testing?

When using component based software development the

major challenge is to perform integration and regression

testing thereby followed by acceptance testing and

maintenance after the software is being deployed. The

prefabricated components may not behave the same way

on the client’s server as expected to due to various different

parameter changes. Testing such components would

increase testing time thereby increasing the usage of

resources and cost of the software development.

So in these cases it would be preferable to use built-in

testing where the component developers provide developed

test suites within the component and when they are

plugged into the system the testing is automated. This is

one of the main reason why built-in testing is employed in

component based software development system.

How can Built-in Testing facilitate verifiability?

Verification and Validation requires lot of human

intervention in standard testing procedures. When

Component based software system is used to ensure the

benefits of plug-and-play there is a need not only to

perform integration and regression testing but also

verification. Built-in Testing provides a way through which

the prefabricated components could automate their testing

by using already defined test cases and test interfaces

within the component. To provide verifiability such that

component can provide reactive notifications in case of

defects, an extension to built-in testing has been proposed

in [2] termed as MORABIT. 3) How can Built-in Testing

facilitate maintainability?

International Journal of New Media Studies ISSN: 2394-4331

Volume 4 Issue 2, Julyy-December, 2017

105

To facilitate maintainability mechanisms built-in testing

operates in basically two modes as normal mode and

maintenance mode as proposed in [6].

In normal mode it works same as normal calling member

functions procedure as

 Class class name {

/ / c l a s s i n t e r f a c e

Declarations

Constructer d e c l a r a t i o n Destructor

 d e c l a r a t i o n

 Test cases / / built −in t e s t s

/ / implementations

Constructor Destructor

 Test i n t e r f a c e s / / built −in t e s t s

}

In normal mode, the object are called as normal functions.

In maintenance mode, the test cases are recalled and the

output is obtained as follows:

T e s t r e s u l t 1 = BIT1 OK

How Built-in testing facilitates regression testing?

To facilitate regression testing within built-in testing

basically two perspectives needs to be checked. Firstly the

component developer would develop test interfaces and

place them within the component to check the relation

between specific input and changed point. Secondly, the

component user would call only those test cases whose test

interfaces can be used for regression testing. The method

for performing regression testing through built-in testing

has been mentioned in [5] along with the test selection

criteria.

Will built-in testing shorten software total development

time?

In most cases, it would definitely decrease total

development time as the test cases and test interfaces are

embedded within the component itself and they provide

integration and regression testing. But the time required in

testing the requirements and analysis phase would be the

same as any other software development system. Hence

considerable differences cannot be observed as the

component user to perform acceptance and regression

testing will need to select specific test cases from already

available test suites.

The above questions address most of the issues in

component based software development through built-in

testing approach. In the following section the built-in

testing approach as proposed in [4] is discussed.

Built-in Contract Testing

The built-in testing addresses the following two places

where test suites should be located in the component based

software development.

1) To embed test cases and test interfaces within the

component so that servers at client side can be

tested and see if the component works as expected.

2) At client side to check the component works

according to the semantics mentioned in the

contract.

The following figure illustrates the above two points.

Figure 1.Component Deployment in System

Above two points can be categorized into two components namely tester component and testable component.

International Journal of New Media Studies ISSN: 2394-4331

Volume 4 Issue 2, Julyy-December, 2017

106

Tester Components

Instead of embedding test suites within prefabricated

component, the tester components are those which are

embedded with the software system to test the entire

system. These tester components are required to check the

servers at the client side to ensure that the component

behaves as expected. The tester component includes one or

more built-in tests and is executed after assembling the

component within the system software.

Figure 2.Testing component with server component

Testable components

The testable components are the traditional built-in testing

components which are embedded with test cases and test

suites. These components not only include the code to

traditional components but also test suites. They exhibit the

properties of encapsulation so the component users do not

have any idea of the functionalities and test suites embed

within the component by the component developer. As

shown in figure the testable component includes a testing

interface along with a functional interface. The testing

interface is just like another java-like interface exhibiting

testing contract.

Figure 3 Testable component

CONCLUSION

Testing of component based software development is one

of the recent research area and not many research has been

performed in this area. Though using built-in testing in

component based software development provides many

benefits but there is trade-off here. With more added

functionality comes more complexity in the code of the

component, which creates pretty difficult for the

component developer to code such a component. Built-in

testing if deployed correctly within the component would

provide all the testing benefits as it provides mechanisms

for integration and regression testing along with

maintainability and verifiability features.

REFERENCES

[1]. Sami Beydeda. “Research in testing COTS

components built-in testing approaches”. In:

Computer Systems and Applications, 2005. The 3rd

ACS/IEEE International Conference on. IEEE.

2005, p. 101.

[2]. Daniel Brenner et al. “Reducing verification effort

in component-based software engineering through

International Journal of New Media Studies ISSN: 2394-4331

Volume 4 Issue 2, Julyy-December, 2017

107

built-in testing”. In: Information Systems Frontiers

9.2-3 (2007), pp. 151–162.

[3]. Sravan Kumar Pala, “Synthesis, characterization

and wound healing imitation of Fe3O4 magnetic

nanoparticle grafted by natural products”, Texas

A&M University - Kingsville ProQuest

Dissertations Publishing, 2014. 1572860. Available

online

at: https://www.proquest.com/openview/636d984c6e

4a07d16be2960caa1f30c2/1?pq-

origsite=gscholar&cbl=18750

[4]. Jerry Gao et al. “On building testable software

components”. In: COTS-Based Software Systems.

Springer, 2002, pp. 108–121.

[5]. Hans-Gerhard Groß. “Built-in Contract Testing in

Component-based Application Engineering”. In:

[6]. CologNet Joint Workshop on Component-based

Software Development and Implementation

Technology for Computational Logic. 2002.

[7]. Sravan Kumar Pala, “Advance Analytics for

Reporting and Creating Dashboards with Tools like

SSIS, Visual Analytics and Tableau”, IJOPE, vol. 5,

no. 2, pp. 34–39, Jul. 2017.

Available: https://ijope.com/index.php/home/article/

view/109

[8]. Chengying Mao. “Built-in regression testing for

component-based software systems”. In: Computer

Software and Applications Conference, 2007.

COMPSAC 2007. 31st Annual International. Vol. 2.

IEEE. 2007, pp. 723–728.

[9]. Yingxu Wang, Graham King, and Hakan Wickburg.

“A method for built-in tests in component-based

software maintenance”. In: Software Maintenance

and Reengineering, 1999. Proceedings of the Third

European Conference on. IEEE. 1999, pp. 186–189.

https://www.proquest.com/openview/636d984c6e4a07d16be2960caa1f30c2/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/636d984c6e4a07d16be2960caa1f30c2/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/636d984c6e4a07d16be2960caa1f30c2/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/636d984c6e4a07d16be2960caa1f30c2/1?pq-origsite=gscholar&cbl=18750
https://ijope.com/index.php/home/article/view/109
https://ijope.com/index.php/home/article/view/109

