

International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 1, January-June, 2021, Impact Factor: 6.789

Page | 29

An Examination of Software Reliability Models in the

Context of Software Product Release

Podduturu Sharanya
1
, Dr. Deepak Sharma

2

1Research Scholar in Computer Science and Engineering Dept, Monad University, Hapur, Pilkhuwa Distt, Uttar Pradesh, India
2Professor in Computer Science and Engineering Dept, Monad University, Hapur, Pilkhuwa Distt, Uttar Pradesh,. India.

ABSTRACT

The software manufacturer will have to pay for post-release

repairs if a product with a large number of flaws is made

available to users too soon. A product that is released too

late runs the risk of missing a market window and incurring

additional development costs. Software Reliability Growth

Models (SRGMs) are used to estimate software release time

and are capable of capturing the quantitative features of

testing. From a cost-benefit perspective, SRGMs help

developers determine whether to deliver software products

at the best time by offering practical methods for reducing

the anticipated overall cost of the software system. This

paper presents the findings from a cost model study, which

contributes to the discussion of when to stop testing software

products. The research focuses on the relationship between

the cost of development and the software product's delivery

schedule, as well as the overall cost of the software, which

includes risk charges like fines for late software delivery and

repair expenses for defects found during the warranty

period. We also look into different software release

approaches, such as those that are based on the

complementary constraints of dependability and cost.

Keywords: Non-Homogeneous Poisson Process (NHPP),

Software Release Rules, Software Testing, Cost Models, and

Software Reliability Growth Models.

INTRODUCTION

Today, science and technology demand high perfor-

mance hardware and high quality software in order to

achieve new breakthroughs in quality and productivity. It

is the integrating potential of the software that has allowed

designers to contemplate more ambitious systems, encom-

passing a broader and more multidisciplinary scope, with

the growth in utilization of software components being

largely responsible for the high overall complexity of

many system designs. However, in stark contrast with the

rapid advancement of hardware technology, proper devel-

opment of software technology has failed miserably to

keep pace in all measures, including quality, productivity,

cost and performance.

When the requirements for and dependencies on com-

puters increase, the possibility of a crisis from computer

failures also increases. Hence, for optimizing software

use, it becomes necessary to address issues such as the

reliability of the software products. There are many prob-

abilistic and statistical approaches to modelling software

reliability. Using tools/techniques/methods, software de-

velopers can design several testing programs or automate

testing tools to meet the client’s technical requirements,

schedule and budget. These techniques can make it easier

to test and correct software, detect more bugs, save more

time and reduce expenses significantly [14].

There has been much effort expended in quantifying the

reliability of a software system through the development

of models [42]. These models are collectively called

Software Reliability Models (SRMs). The main goal of

these models is to fit a theoretical distribution to time-

between-failure data, to estimate the time-to-failure based

on software test data, to estimate software system’s relia-

bility and to design a rule for determining the appropriate

time to terminate testing and to release the software into

the market place [6], [41], [51]. However, the success of

SRMs depends largely on selecting the appropriate model

that best satisfies the stakeholder’s need.

While testing software, SRMs are useful in measuring

reliability for the quality control and testing process

control of software development. In particular, SRMs that

describe software failure-occurrence or fault-detection

phenomenon in the system phase are called Software

Reliability Growth Models (SRGMs). In the testing and

validation phase of the software product life-cycle, the

common goal of these models is to support the trade-

off between three dimensions, namely, quality, schedule

and cost. Despite their shortcomings - excessive data

requirements for even modest reliability claims, difficulty

of taking relevant non-measurable factors (such as soft-

ware complexity, architecture, quality of verification and

validation activities, and test coverage) into account etc.

- SRMs offer a way to quantify uncertainty that helps

in assessing the reliability of software systems, and may

well provide further evidence in minimizing development

cost and predicting software release time [1], [13], [17],

[24].

Although testing is an efficient way to detect and re-

International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 1, January-June, 2021, Impact Factor: 6.789

Page | 30

Figure 1. Identified Perspectives for Cost Optimization

solve faults to avoid failure of a software system, exhaus-

tive testing is impractical. Therefore, software developers

need to decide when to stop testing and release the

software to the customers. From a cost-benefit viewpoint,

SRGMs aid developers to decide the optimal release

time of the software product by minimising the expected

total software system cost. This paper helps answer the

question of when to stop testing a software product by

presenting the perspectives from a study of cost models.

The study focuses on aspects of the relationship between

development cost and schedule delivery of the software

product and the total software cost including the risk

costs, such as the penalty cost incurred due to late delivery

of the software product and the cost of fixing a fault

during the warranty period. We also investigate various

software release policies, for example, release policies

based on dual constraints of cost and reliability. The aim

of this study is to help provide a better understanding

of the usefulness of SRGMs in determining when to re-

lease a software product from the viewpoint of achieving

an optimization between development cost and software

quality.

I. COST OPTIMIZATION

Before releasing a software product, an important deci-

sion from an economic standpoint is whether to continue

testing, stop testing or scrap the software [38]. Though

prolonged testing is desirable from a reliability point of

view, it adds substantial cost to the software development.

On the other hand, if the cost of testing or the cost of

delay in release is very high, the solution will tend to

be not to test and to scrap the software due to high

risk costs. In practice, cost optimization is a trade-off

between three dimensions, namely, cost functions, release

policy and cost-benefit analysis where the objective is to

minimize total cost, i.e., development cost and risk cost,

while maximizing benefits to the software manufacturer

[42]. In Figure 1, we have identified these perspectives

which contribute equally towards cost optimization of a

software product. While appropriate cost functions aid

project managers to minimize risk costs during develop-

ment and in the warranty period, software release policies

incorporating the dual constraints of cost and reliability

help to obtain possible software release time values; and

cost-benefit analysis helps to decide the optimum software

release time.

A. Uncertainty in Releasing a Software Product

Software product development is characterized by un-

predictability, and there are often large discrepancies

between the initially planned and actual project objectives.

The unpredictability of software product development is

not new. Different criteria can be identified to formulate

the cost optimization problem. Firstly, if the requirement

is fault-free software or any other reliability goal, then

the problem is to determine the minimal testing time to

reach the reliability requirement. Secondly, if the total

software cost (i.e., combined cost of developing and

maintaining a software product) is to be considered, then

the optimum release time is determined using appropriate

cost functions, so that the total expected software cost

can be minimized. Based on the Jelinski and Moranda

(J-M) model [16], Koch and Kubat in their paper [28]

introduced a balanced cost-benefit function considering

not only the total costs of testing, but also the benefits

derived from the application to determine the optimal

release time. This cost-benefit function takes into account

the planned delivery time, cost of correcting faults (in both

testing and implementation phases of software product

life-cycle), cost of goodwill due to faults after delivery,

loss due to delayed delivery, benefits of using the testing

team after the software release, and benefits associated

with successful operation of the software per time unit.

In such cases, the expected total software cost can be

minimized using their cost function together with any

SRM. Therefore, software release time is associated with

the cost of software testing and the gain of an earlier

release of the software. Gain is defined as the difference

in cost incurred when all the faults are removed during the

operational phase as against the cost when some faults are

removed during the testing phase and others are removed

during the operational phase [2]. In practice, a software

manufacturer wants to determine the optimum testing time

from a cost-benefit point of view.

If the software industry is unable to find easy-to-

implement improvement strategies, the typical software

manufacturer organization is likely to become increas-

ingly less predictable in terms of cost and quality. In

markets with increasing competition and smaller mar-

ket windows, software manufacturer might experience

increasing pressure to release software products prema-

turely, disregarding the total life-cycle effects [3]. In this

case, uncertainties are:

Unknown software product behaviour: It is difficult,

if not impossible, to guarantee that the software product

meets the exact functional and non-functional require-

ments. This may lead to dissatisfied customers/end-users

and to unforeseen, even potentially dangerous, situations.

Apart from the fact that people’s lives may be at risk,

International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 1, January-June, 2021, Impact Factor: 6.789

Page | 31

Σ

such situations can have an enormous financial impact on

the software manufacturer.

Unknown operational maintenance cost: The post-

release or maintenance cost of the software may become

unexpectedly high. If the exact status of the software

with its documentation is unknown, a software manu-

facturer may be confronted with high maintenance costs

for correcting failures. Future adaptive and perfective

maintenance activities may be severely hampered.

The presence of these uncertainties may have a dra- matic

impact on a software manufacturer’s market posi- tion.

Releasing a software product too late might severely

undermine its market position, releasing a software prod-

uct prematurely might lead to recalls and warranty, or

even liability problems.

B. Cost Overruns

Estimation of accurate time-to-market (schedule) of a

software product is a major topic of concern in the soft-

ware product development industry [9]. Having computed

a nominal value for a schedule, a software manufacturer

may face the question of adjusting the schedule to either

deliver the software product at an accelerated pace, or to

improve efficiency. Any adjustment to the schedule will

have a subsequent cost impact. As a schedule is further

stretched, the manufacturer faces severe cost penalties.

Since it is expensive to fix post-release failures, software

manufacturers frequently decide to release the system

as late as possible, i.e., at the deadline or after the

deadline. If the software fails during the warranty period,

additional costs are incurred by the manufacturer, which

are known as the risk costs [35]. Risk costs also include

the penalty cost which is incurred by the manufacturer

for not delivering the software within the scheduled time

[20], [45]. The penalty cost is usually proportional and

exponential to the delivery time.

II. SOFTWARE COST MODELS

SRMs offer a way to quantify uncertainty that helps in

assessing the reliability of software systems, and may

well provide further evidence in minimizing development

cost and predicting software release time. In the literature,

several researchers have developed models for cost-benefit

analysis of the testing process, all based on the initial

cost model described by Goel and Okumoto (G-O) [10].

Models are described, for example, by Yamada and Osaki

[47]; Brettschneider [5], presenting a simplified decision-

making model; Xie and Yang [43], incorporating the

effect of imperfect debugging on software cost; Huang

et al. [14], incorporating ways to improve test efficiency;

Yamada et al. [44], incorporating life-cycle distribution

and applying discount rate; Pham and Zhang [37], incor-

porating test coverage; Leung [29], incorporating a budget

constraint; Kapur and Garg [20]; Ehrlich et al. [7]; Yang

and Chao [50]; Boland and Singh [4]; Hou et al. [12];

Koch and Kubat [28], incorporating the penalty cost when

the software is delivered after the scheduled delivery time;

Pham and Zhang [35], [36], developing a generalized cost

model which considered fault removal cost, warranty cost,

and software risk cost due to software failures; Liu and

Chang [32] also addressing the risk cost; and Kimura

et al. [27] developing a software cost model considering

software maintenance cost during the warranty period.

Using the G-O Non-Homogeneous Poisson Process

(NHPP) reliability model, Okumoto and Goel [34] sug-

gested a simple cost model which determines a point in

time as an optimal software release time and cost of

testing per time unit. The expected cost C(T) of the

software product released at a given time T is calculated

by using the following cost function:

C(T) = C1(T) + C2(T) + C3(T) (1)

The actual cost of a software project is given by C(T),
and is often called the software cost model. C1 is the

cost incurred by fault removal activities during testing,

C2 is the cost incurred by fault removal activities during

the operational phase, C3 is the general cost of software

testing. Despite the fact that many software cost models

have been proposed, for most of them, C1(T), C2(T),
and C3(T) are common cost components that have been

adopted. Using a formula given by Yang et al. [49] the

software cost can be formulated as:

6

C(T) = C0 + Ci(T) (2)

i=1

where C0 is the setup cost for software testing, C4
is the risk cost due to software failures, C5 is the cost

to remove faults in the warranty period and C6 is the
penalty cost. In existing research, different formulations

of cost components Ci(T), 1 ≤ i ≤ 6, have been
proposed. Moreover, other cost components can be con-

sidered and added to the generalized cost model as well.

It is known from [19] that the costs of quality can be

categorized into prevention costs, appraisal costs, internal

failure costs, and external failure costs. Later, Slaughter

et al. [40] elaborated that while developing a software

product, appraisal cost comprises cost of code inspections,

testing, software measurement activities, etc.; prevention

costs includes the costs of training man-power in design

methodologies, quality improvement meetings, software

design reviews, etc.; internal failure costs is a mixture

of the costs of rework in programming, reinspection,

retesting, etc.; external failure costs represent expenses

incurred in field service and support, maintenance, liabil-

ity damages, litigation expenses, etc. In the generalized

cost model above, C1(T) and C3(T) can be viewed as

a mixture of appraisal costs and internal failure costs;

C2(T), C4(T), C5(T), and C6(T) can be viewed as

external failure costs. Therefore, it can be noted that the

cost defined in (2), C(T), is only part of the total cost

incurred in the development of the software product.

The formulation of C1(T) is generally considered to

be proportional to the number of software faults removed

during the testing phase.

International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 1, January-June, 2021, Impact Factor: 6.789

Page | 32

3 1
2

4

D R

1 2 as a function of the adjusted failure rate λ (n, t) of the

C1(T) = c1m(T) (3)

where c1 is the deterministic cost to remove each fault

per unit time during testing and m(T) is the expected

number of saftware failures by time T .
Similarly, C2(T) is considered to be proportional to the

number of software faults removed during the operational

phase. Thus,

C2(T) = c2[m(TLC) − m(T)] (4)

where c2 is the cost of fixing each fault during oper-

ation and m(TLC) is the expected number of software

failures in the life-cycle length of the software product.

Since, c1 is the deterministic cost to remove each fault per

unit time durig testing and c2(T) is the cost of removing

a fault in the operational phase; normally, c2 > c1.

C3(T) is assumed to be a power function of testing

time T , i.e.,

C3(T) = c3T
k
 (5)

The parameter k(0 < k ≤ 1) reflects the fact that the
increasing gradient is different in the beginning and at
the end of testing. In the simplest case, k = 1. For SRMs

considering test effort [13], [15], C3(T) is formulated as:

C3(T) = cr[W (T)]k
 (6)

The risk cost due to software failures, C4(T), is given

as:

C4(T) = c4[1 − R(x∣T)] (7)

Pham and Zhang [36] developed a Net Gain in Reliabil-

ity (NGIR) model and defined the expected NGIR, E(T),
of the software development process as the economical

net gain in software reliability that exceeds the expected

total cost of the software development.

E(T) = Expected gain in reliability - (total

development cost + risk cost)

Using (3, 4, 5 and 7) the NGIR is, therefore, given by

Pham and Zhang [36] is:

E(T) = R(x∣T)(Cg + c4) −

n
C (T) + m(T)

h
c +

cr
m(T)

i
+ c

,

Finally, the penalty cost [12], [20], [28], C6(T), can be

formulated as:

C6(T) = I(T − Td)Cp(T − Td) (10)

where, I(.) is an indicator function, defined as, I(t) ≡

1, if t ≥ 0, else 0.

It is of great interest to determine an optimum software

release time satisfying both cost and reliability require-

ments. Both the expected total software cost C(T) and

the software reliability R(x∣T) are assumed to be the
evaluation criteria satisfying software cost and software
reliability requirements simultaneously.

A. Cost Model for Imperfect and Explicit Debugging

Usually the costs of testing are based on software

reliability models which assume that the fault is debugged

as soon as it is detected, and the debugging process is per-

fect. According to Gokhale et al. [11], the time required

to debug a fault, however, cannot be neglected; and hence

at any given time, the number of faults debugged will be

less than the number of faults detected. Thus, the cost of

resolving a failure in practice consists of two parts: the

cost of opening a modification request and diagnosing

the fault that caused a failure; and the cost of removing a

fault and verifying that the failure no longer occurs. The

former depends on the fault detection process, and the

latter depends on the debugging process. Gokhale et al.

[11] denote c7 (total cost of detecting a fault and resolving

a failure during testing) as the cost associated with the

former, and c9 (cost of debugging a fault in the testing

phase) with the latter. For a release time T , the economic

model presented by Ehrlich et al. [7]:

E = CB(T) + c1m(T) +

c2(a − m(T)) + c8(λ(n, T)ηl)

(11)

is modified by Gokhale et al. [11] to be:

E = CB(T) + c7mD(T) + c9mR(T) +
′

c2(a − mR(T)) + c8(λ (n, t)ηl)

(12)

where m (t) and m (t) denote the expected number

(8) of faults detected, and removed respectively, by time T . (cost to customer operations in the field) is considered

where, m(T)

c + cw m(T)

is the expected total costs

c8
′

to remove all faults detected during the period [0, T).

Pham and Zhang [35] and Sgarbossa and Pham [8]

suggested the cost to remove a fault during the warranty

period, C5(T), given by:

software.

B. Cost Factor for Release of New Versions

To ensure ongoing software quality, new releases of

C(T) = C 0 + C3(T) + c1m(T)µy +
given software are required. These releases provide the

customer with improved and fault-free versions and the

C5µr[m(T + Tr) − m(T)] + CR[1 − R(x∣T)]
(9)

process of providing new versions continues throughout

the software product life-cycle. A common situation in

International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 1, January-June, 2021, Impact Factor: 6.789

Page | 33

1

5

1

c −c

practice is that the same software is released several

times in different versions. Usually, these packages are

not static and require changes to correct faults, improve

performance, and add new and improved features [42].

In this light, Levin and Yadid [30] proposed a model

for determining the release time of a new version of

software by using the G-O model for the software failure

process. The optimization is carried out by minimizing

the expected total development cost. Four different cost

factors associated with the release of new release are:

1) Based on the G-O model with parameters a and b,
the expected number of faults detected during time

[0,t), is given by a[1 − exp−bt]. Taking the sum of

the fix cost ц associated with the next release and

the average cost of correcting an fault c1, given by
Levin and Yadid [30] is:

ц + c a[1 − exp−bt] (13)

where fix cost includes the cost of documentation,

distribution, installation, customer training etc., and

the average cost of correcting a fault is assumed to

be proportional to the number of detected faults.

2) Cost of improving the software during time (0,t] is

thus given by:

c v[exp−zt
 − 1 + zt]z (14)

3) Next cost factor is called the cost of software

obsolescence, obtained as:

c6x[exp−yt
 − 1 + yt]

(15)
yt

This factor represents the loss of market share since

the longer it takes to release a new version, the more

users turn to other competitors.

4) The optimum time to release a new version is then

determined by minimizing the total cost per unit

time, given by:

ц + c1a[1 − exp−bt] + c5v[exp−zt

c(t) =
c x[exp−yf−1+yt]

reliability requirement have been studied by Koch and

Kubat [28]; Okumoto and Goel [34]; Shanthikumar and

Tufekci [39]; Yamada et al [45], [48]; Kimura et al.

[27]; Kapur and Garg [21]; Huang [13]; Ahmad et al.

[1], and Yang et al. [49]. Software release policies based

on cost and reliability criteria and their variants such

as controlling the test effort expenditures are discussed

by [13], [24] and estimation of penalty cost by [20].

In addition, Kapur and Garg studied software release

policies for Continuous time SRGMs [22], optimising

two conflicting objectives, namely software cost subject

to budget and reliability constraints. The policies for the

Discrete time SRGMs are discussed by [26], [46]. These

release policies are useful to control the total software

testing cost in both testing and validation phases of the

software product life-cycle.

A. Release Policy for Continuous Exponential SRGM

For an Exponential SRGM in Continuous time, Kapur
et al. in [22], [23] defined the mean value function as

m(t) = a(1 − exp−bt) and the failure intensity as λt ≡
m′(t) = abexp−bt

. It may be observed that λ(t) is a

decreasing function in t with λ(0) = ab and λ(∞) =
0. Substituting cost components c1(T) and c2(T) from
equations (3) and (4) in (1), the total cost function can be

obtained as:

C(T) = c1m(T) + c2(m(TLC) − m(T)) + c3T (17)

and the expected software reliability R(x∣T) given that

the last failure occured in T ≥ 0(x ≥ 0)) is defined as:

R(x∣T) = exp−[m(T +x)−m(T)] (18)

While determining software release policies for

SRGMs, three types of criteria are commonly considered:

Cost Criteria: The objective in this case is to find a

release time T , such that the total expected software cost

during the software product life-cycle is minimised. By

differentiating total cost function C(T) in equation (17)

with respect to T , one obtains:

−1 + zt]z + 6

t C′(T) = −(c — c)m′(T) + c (19)

SOFTWARE RELEASE POLICIES

(16) where C′(T) = 0 if m′(T) = c3 .
2 1

Reliability Criteria: The objective in this case is to find

a release time T , satisfying R(x∣T) ≥ R0, where (0 <
After the prescribed reliability goal is set and the focus

is to achieve the target reliability, for any software cost

model there is a need to determine the optimum release

policy by minimizing the expected total cost subject to the

reliability goal. A lot of software release policies discuss

the best time to make a decision to stop testing software

and release it to the customer. In the literature, the

optimal software release problem has been discussed by

researchers since the early 1980s [13], [20], [22–26], [46].

Software release policies which explain dual constraints

of minimizing a total average software cost satisfying a

R0 < 1) is the required level of reliability. From (18)

R(x∣0) = exp−m(x)
 and R(x∣∞) = 1. By differentiating

R(x∣T) with respect to T , one obtains:

R′(x∣T) = exp−[m(T +x)−m(T)]

(abexp−bT
 (1 − exp−bx))

(20)

Cost and Reliability Criteria: The objective in this case

is to either minimise cost subject to reliability not less

yt
2 3

International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 1, January-June, 2021, Impact Factor: 6.789

Page | 34

1

∫

than a predefined reliability level or to reliability subject

to cost not exceeding a predefined finite budget. The

objective is, therefore, either minimise C(T) subject to

R(x∣T) ≥ R0 or maximise R(x∣T) subject to C(T) ≤

C(T) = C(T ∣Ts) = c1m(T) + c2(m(TLC − m(T))
T

+c3T + CP (T − t)dG(t)
CB, where CB is the predefined budget level.

B. Release Policy for Discrete Exponential SRGM

The mean value function (number of faults detected in

n test run) for a Discrete Exponential SRGM is given by

Kapur et al. [23], [25] as:

0

(27)

Later, Kapur and Garg [20] added that the expected

penalty cost is an increasing function in t. Differentiating

C(T) in (24) with respect to T , they the authors obtained

the expected penalty cost as:

m(n) = a[1 − (1 − b)n], a > 0, 0 < b < 1 (21)
and the discrete failure intensity is given as:

C′(T) = −[(c
∫ T

 d
— c)m′(T) −

λ(N) = m(N + 1) − m(N) = ab(1 − b)N

 (22)

dT
CP (T − t)dG(t)] + c3

(28)

given that λ(N) decreases as N increases, where

λ(0) = ab and λ(∞) = 0. The cost during the software
product life-cycle NLC, when the software is released
after N test runs is:

C(N) = c1m(N) + c2(m(NLC) − m(N)) + c3N (23)

Comparing the cost when the software is released after

(N + 1) and N test runs yields:

C(N + 1) − C(N) = −(c2 − c1)λ(N) + c3 (24)

Discrete software reliability R(x∣N) is defined as the

probability that software failure does not occur in (N, N +
x] test runs, given that the last failure occurred in N test
runs, given by Kapur et al. [23], [25] is:

−m(N +x)−m(N)

Using (28), Kapur et al. [20], [23] derived the release

policy under penalty cost based on minimizing C(T)

subject to R(x∣T) ≥ R0 where T ≥ Ts. Two were cases
considered: (i) when Ts is deterministic; and (ii) when Ts

has an arbitrary distribution.

D. Release Policy with Test Effort

For software release policies, the testing cost is di-

rectly proportional to the testing time T . Therefore, if

T becomes infinitely large, so does the testing cost. In

reality, no software developer will spend infinite resources

on testing the software. Test effort curves are typically

used to measure testing resources, such as CPU time,

man power etc. Assuming test effort to be Exponential,

Kapur & Garg [23] discussed the release policy for an

Exponential SRGM with the added assumption that test-

ing resources are described by an Exponential curve. For
an Exponential type test effort curve, w(t) = αβexp−βt

R(x∣N) = exp

where x is the number of test cases.

(25)
describes instantaneous testing resources. The test effort

expenditure in time t is generally given as:

Combining (24) and (25), the cost and reliability crite-

ria are discussed by Kapur et al. in [25].

W (t) =
t

w(x)dx = α(1 − exp
0

−βt

) (29)

C. Release Policy under Penalty Cost

If the software manufacturer fails to release the soft-

ware product at the scheduled delivery time, additional

costs are incurred by the manufacturer termed as penalty

cost. To determine penalty cost, Yamada et al. [45]

assumed Ts, i.e., scheduled delivery time of the software,

is a random variable with cumulative distribution function

(CDF) G(t) and finite probability density function (PDF)

as g(t). Using CP (t) as the penalty cost incurred in time

(0, t] due to delay in software release, they obtained the

expected penalty cost in (Ts, T] as:

T

CP (T − t)dG(t) (26)
0

Thus, the total expected software cost during the soft-

ware product life-cycle obtained by Yamada et al. [45]

is:

Generally, the total test effort expenditures does not

exceed α even if the software is tested for an indefinite

time. Based on minimizing cost subject to reliability not

less than a predefined reliability objective R0, Kapur &

Garg [23] formulated the software release policy with test

effort as:

C(T) = c1m(T) + c2(m(TLC − m(T)) + crW (T) (30)

The software reliability R(x∣T) is given by:

R(x∣T) = exp[exp−bm(T)−exp−bm(T +x)] (31)

When the test effort curve is a Weibull curve instead of

Exponential, release policies for cost, reliability and com-

bined cost and reliability are discussed by Lin and Huang

[31]. In this paper, the authors assumed that in certain

cases, the policies of testing resources allocation could

∫

∫

2

0

International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 1, January-June, 2021, Impact Factor: 6.789

Page | 35

C

C

Σ

be changed. Based on this assumption, they presented

concepts of multiple change-points into Weibull-type test

effort functions. The testing resource allocation problem

has also been studied by Jha et al. [18] by minimizing the

total software testing cost of a modular software system,

given a reliability constraint and an upper bound on the

amount of available testing resources.

E. Bicriterion Release Policy

For Exponential Continuous time models, the Bicri-

terion release policy is discussed by Kapur and Garg

[23]. This policy optimizes two objectives simultaneously,

namely total expected software cost not exceeding a

specified budget and software reliability not less than a

given reliability level. Such a release policy gives enough

flexibility in finding the optimum release time for the

software, based on relative importance associated with

both cost and reliability. The Bicriterion software release

policy aims at minimizing cost and maximizing reliability

simultaneously such that the total expected cost during the

software product life-cycle does not exceed a specified

budget and conditional reliability is not less than a pre-

specified reliability objective.

Mathematically, Kapur and Garg [23] state,

maximize log R(x∣T),

minimize C̄ (T)

subject to

C̄ (T) ≤ 1

R(x∣T) ≥ R0

T ≥ 0, 0 < R0 < 1

If λ1 = 0 and λ2 = 1 and CB is sufficiently large,

this formulation reduces to the classic cost optimisation

problem discussed by Okumoto and Goel [34]. Whereas,

if λ1 = 1 and λ2 = 0, this formulation reduces to the

reliability optimisation problem to suit high reliability

projects, such as nuclear reactors, space exploration etc.,

since the reliable operation of these projects is critically

dependent on the reliable operation of their software

components.

However, in the Bicriterion software release policy, λ1
and λ2 can be fixed or variable according to the priority

attached to the reliability and cost functions. Using c¯i =
 ci , i = 1, 2, 3 the objective function F (T) is formulated

B

as:

F (T) = m(T)[λ1 + λ2(c¯2 − c¯1)] −

λ1m(T + x) − c̄2λ2m(TLC) − c¯3λ2T

(32)

The different values of λ1 and λ2 give rise to different

values of optimal software release time (T ∗) and hence,

different R(x∣T ∗) and C(T ∗). Giving more weight to
reliability (i.e., higher λ1) helps obtain an optimal solution

with higher value of R(x∣T ∗). If the emphasis is on
maximising reliability only (i.e., λ1 = 1, λ2 = 0), then

the highest possible reliability value can be achieved by

exhausting the total budget.

F. Data Analysis

To obtain the cost and reliability values for the software

release policies discussed in this section, we consider the

data provided by Musa et al. [33]. The G-O model was

used for this study, which is one of the earliest NHPP-

where C̄ (T) = C(T

)
 . This is reduced to a single

B
based SRGMs developed and has been widely used in the
literature. The data is for software tested for 125 CPU

objective optimization problem by introducing:
hrs over 11 days with a total of 32 faults being detected.
Using this data set, cost parameters were assumed as c =

 λ1 2 1
150, c = 250, c = 70, the desired reliability level as 0.87,

λ = λ2 ∈ R , 2 3

where λ1 ≥ 0, λ2 ≥ 0,

λi = 1
i=1

Here R
2
 is the coefficient of multiple determinations

and λi(i = 1, 2) is the priority for the itℎ component.

Using λ1 and λ2, a degree of flexibility is introduced

over the other release policies where optimization is

based either on cost or reliability functions and thus the

previously stated formula is further reformulated as

rcl maximize F (T) = λ1 log R(x∣T) − λ2C̄ (T)

subject to

C̄ (T) ≤ 1

R(x∣T) ≤ R0

T ≥ 0, 0 < R0 < 1

budget cost CB = 20000 and penalty cost = 150. We have

assumed these values as an example, since it is expected

that software developers have reliable estimates of various

model and cost parameters from past experiences. In

table I, we have summarized the cost parameters and the

desired reliability level. From the failure data recorded

in this study, the constant parameters a and b for both

Continuous and Discrete Exponential G-O model were

obtained as a = 58.07821 and b = 0.0703236. Under

these parameters, the optimal release time obtained for

the Discrete Exponential model is 47.55 days at the time

point when reliability is 0.87 and cost is $ 11870.43. The

plots of (a) cost function and (b) reliability growth curve

for the Discrete time G-O exponential model are shown

in Figs. 2a and 2b, respectively.

For software release policy under penalty cost, the

optimal release time is 47.55 days at the time point when

reliability is 0.87 and cost is $ 58070.81. The plots of

(a) cost function and (b) reliability growth curve for the

2

International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 1, January-June, 2021, Impact Factor: 6.789

Page | 36

(a) (b)

Figure 2. Plots of (a) cost function and (b) reliability growth curve for the Discrete Exponential software release policy

(a) (b)

Figure 3. Plots of (a) cost function and (b) reliability growth curve for the Penalty cost software release policy

TABLE I.
SUMMARY OF SELECTED DATA SET [33]

TABLE II.

DATA VALUES FOR BICRITERION SOFTWARE RELEASE POLICIES

λ1 λ2 T ∗(days) R(x∣T ∗) C(T ∗)

0.6 0.4 68.62418 0.968868 13187.19

0.5 0.5 63.18735 0.954702 12828.30

0.4 0.6 57.9011 0.934981 12489.00

policy are shown in Figs. 4a and 4b, respectively.

For the Bicriterion software release policy, different

values for λ1 and λ2 give rise to a different optimal
∗

release time T and hence, different R(x∣T ∗) and C(T ∗).
policy under penalty cost are shown in Figs. 3a and 3b,

respectively.

From the failure data, the constant parameters a and b
for the Continuous G-O model with exponential test

effort function were obtained as a = 61.09838 and b =

0.00634789, and the parameters α, ν of test effort function

were obtained as α = 2171.339 and ν = 0.004861476.

Note that the value of x for the test effort-based software

release policy is 56 CPU hr. Under these parameters, the

optimal release time obtained for the test effort model

is 52 days when the reliability level is 0.87 and cost is $

42694.57. The plots of (a) cost function and (b) reliability

growth curve for the test effort-based software release

These values are given in table II. The introduction of

λ1 and λ2 gives more flexibility to the software project

manager in setting objectives and thus one may have a

trade-off between cost and reliability depending upon the

importance of each. The plots of (a) cost function and

(b) reliability growth curve for the Bicriterion software

release policy are shown in Figs. 5a and 5b, respectively.

From the above data analysis of the policies discussed

earlier, it is clear that the optimal software release time is
very close. In practice, the type of policy to be adopted

depends mainly on the cost model chosen to estimate the

expected cost. For example, if we consider the penalty

cost in the cost model then the cost incurred would

be more after the scheduled time of software delivery

compared to the cost incurred if a cost model is chosen

Notation Value

c1($) 150

c2($) 250

c3($) 70

x(days) 1

TL& (days) 52

R0 (Desired reliability level) 0.87

CB (Budget) 20, 000

Penalty cost($) 150

International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 1, January-June, 2021, Impact Factor: 6.789

Page | 37

(a) (b)

Figure 4. Plots of (a) cost function and (b) reliability growth curve for the Test Effort software release policy

(a) (b)

Figure 5. Plots of (a) cost function and (b) reliability growth curve for the Bicriterion software release policy

without penalty cost. Therefore, the type of the software

release policy to be chosen depends on:

∙ the objectives of the release policy;

∙ system constraints;

∙ cost model; and

∙ the SRGM chosen to describe the failure process.

In general, no particular policy can be considered as

best in general. It solely depends on the objectives set

by the software project manager/developers, the system

constraints and the testing profile to be attained at the

release time. Hence, one must first define these and

formulate the policy accordingly to obtain the optimum

software release time.

CONCLUSIONS

Most of the existing research on determining the op- timal

time to release software gives insufficient consid- eration

to cost optimization, and the formulations of the problem

are generally based on the treatment (such as

minimization) of the expected cost, either during the

testing or in the warranty period. Since considering cost

control during both development and maintenance phases

is more meaningful in achieving the overall goal of

minimization of total expected costs than simply consid-

ering cost in relation to only one of these phases, these

formulations are flawed. If these formulations are used,

then the solution obtained may give management a false

impression that the cost of the software product is at a

low level (i.e., has been minimized). In fact, what has

been minimized or guaranteed to be below a certain level

is the expected cost either during the testing or in the

warranty period, not the total expected cost; thus, there

exists a certain level of risk that the cost of the software

may be unexpectedly high and the project may run over

budget.

In this paper, we have studied the cost optimization

problem and its impact on optimum software release time

in detail. It is clearly shown that cost-benefit analysis,

cost functions and software release policies are the desired

criteria for scheduled delivery of a software product and

to minimize cost overruns during the warranty period. The

main contribution of the research presented is to demon-

strate the important fact that, in the optimal software

release problem, the uncertainty involved in computing

total software cost should not be neglected. Based on this

standpoint, we have discussed the existing cost functions

which are important in studying the total cost of a

software product during its life-cycle and are incorporated

in obtaining optimum release policies. Further, we have

surveyed the software release policies based on the dual

constraints of cost and reliability for both Continuous

and Discrete time SRGMs. In addition, we have also

discussed the Bicriterion policy and the release policies

for penalty cost incurred due to missed schedules and to

control the test effort expenditures during testing. These

software release policies are important to minimize risk

and estimate total development cost.

International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 1, January-June, 2021, Impact Factor: 6.789

Page | 38

We have also presented data analysis to provide a

comparative summary among the cost models surveyed

and their usage in terms of determining the best possi-

ble release policy for different scenarios. The benefits

of using such an analysis can prove invaluable for a

project manager, since both cost and reliability curves are

very readable and easily interpretable, especially for non-

experts, facilitating the strategy that has to be followed

for better management of a new software project. Due to

the fact that only a few outliners have been considered,

a decision maker benefits greatly from comparing the

performance results of different models.

It has been repeatedly stressed that software man-

ufacturers are confronted with serious problems when

trying to report the pre-release level of product reliability

obtained and the expected post-release maintenance cost,

based on the level of reliability and the maintainability

of the resulting product. The applicability of the existing

theory is limited, and the exploratory case studies confirm

this to be a problem area. This hampers the determination

of the zone of cost effectiveness, especially for larger

and more complex software products. This problem area

has been known for decades, but no solution has been

proposed that has found wide acceptance. The traditional

development methods are not able to cope with this,

possibly implying that the release trade-off question will

become more difficult in the near future due to increasing

uncertainty. It might be worthwhile, although ambitious,

to pursue research in the area of totally new development

approaches, eliminating, or at least reducing, this uncer-

tainty level and moving the decision-making process from

complete uncertainty to informed uncertainty.

Nomenclature

c1 Deterministic cost to remove each fault per unit
time during testing phase

c2 Cost of fixing each fault during operation
c3 Software test cost per unit time
c4 Risk cost per software failure
c5 Average cost of responding to a request for im-

provement
c6 Opportunity loss of a software user
cr The cost per unit test effort expenditure
Cp The function for penalty cost
Cg Coefficient of gain in reliability if the software

works successfully
CR The loss due to software failure
CB The total budget allocated for the software during

the software product life-cycle
T Software release time (same as testing time)
TL& The life-cycle length of the software product
Td Scheduled release time of the software
Tr Warranty period of the software
Ts Scheduled delivery time of the software
a, b Parameters of G-O Exponential model
v, y, z Model parameters reflecting the dynamic of

change in requirements
ц Fix costs (documentation, distribution, installa-

tion, customer training etc.)
a, β Parameters of Exponential test effort curve

′

λ (n, t) Failure rate of the software after accounting for
debugging activities

η Expected execution time of the software release
per field site

l Number of field sites
m(T) Expected number of software failures by time T
m D (t) Expected number of faults detected by time with

explicit debugging
mR(t) Expected number of faults removed by time with

explicit debugging
µy The expected time to remove a fault during testing

period
µr The expected time to remove a fault during war-

ranty period w
W (T) The total test effort spent in (0, T]
w(t) Instantaneous testing resource
R0 Reliability objective

R(x∣T) Reliability function of software by time T for a
mission time x

E Economic consequences involved in stopping test
at time T

REFERENCES

[1] N. Ahmad, M. U. Bokhari, S. M. K. Quadri, and M.

G. M. Khan. The Exponentiated Weibull Software

Reliability Growth Model With Various Testing-

efforts and Optimal Release Policy. International

Journal of Quality and Reliability Management,

25(2):211–235, 2008.

[2] D. S. Bai and W. Y. Yun. Optimum Number of

Errors Corrected before Releasing a Software

System. IEEE Transactions on Reliability,

37(1):41–44, 1988.

[3] E. W. Berghout and M. Nijland. Full Life-cycle

Manage- ment and the IT Management Paradox. In

D. Remeny and

A. Brown, editors, Make or Break Issues in IT

Manage- ment, pages 77–107. Butterworth-

Heinemann, 2001.

[4] P. J. Boland and H. Singh. Determining the Optimal

Release Time for Software in the Geometric Poisson

Reliability Model. International Journal of

Reliability, Quality and Safety Engineering,

9(3):201–213, 2002.

[5] R. Brettschneider. Is Your Software Ready for

Release?

IEEE Software, pages 100–108, 1989.

[6] S. R. Dalal and C. L. Mallows. When Should

One Stop Testing Software? Journal of American

Statistical Association, 83(403):872–879, 1988.

[7] W. Ehrlich, B. Prasanna, J. Stampfel, and J. Wu.

Deter- mining the Cost of A Stop-Test Decision.

IEEE Software, 10(2):33–42, 1993.

[8] F. Sgarbossa and H. Pham. A Cost Analysis of

Systems Subject to Random Field Environments and

Reliability. IEEE Trasactions on Systems, MAN,

and Cybernetics - Part C: Applications and Review,

40(4):429-437, 2010.

[9] N. E. Fenton and S. L. Pfleeger. Software Metrics: A

Rig- orous & Practical Approach. PWS Publishing

Company, 1997.

[10] A. L. Goel and K. Okumoto. Time-Dependent Error

Detection Rate Model for Software Reliability and

other Performance Measures. IEEE Transactions on

Reliability, R-28(3):206–211, 1979.

International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 1, January-June, 2021, Impact Factor: 6.789

Page | 39

[11] S. S. Gokhale, M. R. Lyu, and K. S. Trivedi.

Incorporating fault debugging activities into

software reliability models: a simulation approach.

IEEE Transactions on Reliability, 55(2):281–292,

2006.

[12] R. Hou, S. Kuo, and S. Chang. Optimal Release

Times for Software Systems with Scheduled

Delivery Time Based on the HGDM. IEEE

Transactions on Computers, 46(2):216– 221, 1997.

[13] C. Huang. Cost-Reliability-Optimal Release Policy

for Software Reliability Models Incorporating

Improvements in Testing Efficiency. The Journal of

Systems and Software, 77:139–155, 2005.

[14] C. Huang, S. Kuo, and M. R. Lyu. Optimal

Software Release Policy Based on Cost and

Reliability with Testing Efficiency. International

Computer Software and Applica- tions Conference,

(COMPSAC), pages 468–473, 1999.

[15] C. Huang and M. R. Lyu. Optimal Release Time for

Soft- ware Systems Considering Cost, Testing-

Effort, and Test Efficiency. IEEE Transactions on

Reliability, 54(4):583– 591, 2005.

[16] Z. Jelinski and P. B. Moranda. Software Reliability

Research. In Statistical Computer Performance

Evaluation (Ed.) W. Freiberger, 465–484, 1972.

[17] D. R. Jeske and X. Zhang. Some Successful

Approaches to Software Reliability Modelling in

Industry. The Journal of Systems and Software,

74:85–99, 2005.

[18] P. C. Jha, D. Gupta, B. Yang and P. K. Kapur.

Optimal testing resource allocation during module

testing consider- ing cost, testing effort and

reliability. Journal of Computers & Industrial

Engineering, 57:1122–1130, 2009.

[19] J. Juran and F. Gryna. Quality Control Handbook,

4th edition. McGraw-Hill, 1988.

[20] P. K. Kapur and R. B. Garg. Cost-reliability

Optimum Re- lease Policies for a Software System

Under Penalty Cost. International Journal of

Systems Science, 20(12):2547– 2562, 1989.

[21] Palak Raina, Hitali Shah. (2017). A New

Transmission Scheme for MIMO - OFDM using V

Blast Architecture.Eduzone: International Peer

Reviewed/Refereed Multidisciplinary Journal, 6(1),

31–38. Retrieved from

https://www.eduzonejournal.com/index.php/eiprmj/a

rticle/view/628

[22] Raina, Palak, and Hitali Shah."Security in

Networks." International Journal of Business

Management and Visuals, ISSN: 3006-2705 1.2

(2018): 30-48.

[23]

[24] P. K. Kapur and R. B. Garg. Optimal Software

Release Policies for Software Growth Model Under

Imperfect Debugging. Researche

Operationelle/Operations Research (RAIRO),

24:295–305, 1990.

[25] P. K. Kapur and R. B. Garg. A Software Reliability

Growth Model for Error Removal Phenomenon.

Software Engineering Journal, 7:291–294, 1992.

[26] P. K. Kapur, R. B. Garg, and S. Kumar.

Contributions to Hardware and Software Reliability.

World Scientific, Singapore, 1999.

[27] P. K. Kapur, V. B. Singh, S. Anand, and V. S. S.

Yadavalli. Software Reliability Growth Model With

Change-point and Effort Control Using a Power

Function of the Testing Time. International Journal

of Production Research, 46(3):771–787, 2008.

[28] P. K. Kapur, M. Xie, R. B. Garg, and A. K. Jha. A

Discrete Software Reliability Growth Model With

Testing Effort. 1st International Conference on

Software Testing, Reliability and Quality Assurance,

1994.

[29] P. K. Kapur, S. Younes, and S. Agarwala. A General

Discrete Software Reliability Growth Model.

International Journal of Modelling and Simulation,

18(1):60–65, 1998.

[30] M. Kimura, T. Toyota, and S. Yamada. Economic

Analysis of Software Release Problems with

Warranty Cost and Re- liability Requirement.

Reliability Engineering and System Safety, 66:49–55,

1999.

[31] Hitali Shah.(2017). Built-in Testing for Component-

Based Software Development. International Journal

of New Media Studies: International Peer Reviewed

Scholarly Indexed Journal, 4(2), 104–107. Retrieved

from

https://ijnms.com/index.php/ijnms/article/view/259

[32] H. S. Koch and P. Kubat. Optimal Release Time of

Computer Software. IEEE Transactions on Software

En- gineering, SE-9:323–327, 1983.

[33] Y. W. Leung. Optimum Software Release Time with

A Given Cost Budget. The Journal of Systems and

Software, 17:233–242, 1992.

[34] K. D. Levin and O. Yadid. Optimal Release Time of

Improved Versions of Software Packages. Information

and Software Technology, 32(1):65–70, 1990.

[35] C. Lin and C. Huang. Enhancing and measuring the

predictive capabilities of testing-effort dependent

software reliability models. The Journal of Systems

and Software, 81:1025-1038, 2008.

[36] C. T. Liu and Y. C. Chang. A Reliability-constrained

Soft- ware Release Policy Using A Non-Guassian

Kalman Filter Model. Probability in the Engineering

and Informational Sciences, 21:301–314, 2007.

[37] J. D. Musa, A. Iannino and K. Okumoto Software

Reliabil- ity: Measurement, Prediction, Application.

McGraw-Hill, Inc., 1987.K. Okumoto and A. L.

Goel. Optimum Release Time for Software Systems

Based on Reliability and Cost Criteria. The Journal

of Systems and Software, 1:315–318, 1980.

[38] H. Pham and X. Zhang. A Software Cost Model with

War- ranty and Risk Costs. IEEE Transactions on

Computers, 48(1):71–75, 1999.

[39] H. Pham and X. Zhang. Software Release Policies

With Gain in Reliability Justifying the Costs. Annals

of Software Engineering, 8:147–166, 1999.

[40] H. Pham and X. Zhang. NHPP Software Reliability

and Cost Models with Testing Coverage. European

Journal of Operational Research, 145:443–454,

2003.

[41] J. G. Shanthikumar. Software Reliability Models: A

Review. Microelectronics Reliability, 23:903–949,

1983.

[42] J. G. Shanthikumar and S. Tufekci. Application of

A Software Reliability Model to Decide Software

https://www.eduzonejournal.com/index.php/eiprmj/article/view/628
https://www.eduzonejournal.com/index.php/eiprmj/article/view/628
https://ijnms.com/index.php/ijnms/article/view/259

International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 1, January-June, 2021, Impact Factor: 6.789

Page | 40

Release Time. Microelectronics Reliability,

23(1):41–59, 1983.

[43] S. A. Slaughter, E. D. Harter, and M.S. Krishnan.

Evalu- ating the Cost of Software Quality.

Communication of the ACM, 41(8):67–73, 1998.

[44] G. Xia, P. Zeephongsekul, and S. Kumar. Optimal

Software Release Policy With a Learning Factor for

Imperfect Debugging. Microelectronics Reliability,

33:81–86, 1993.

[45] M. Xie. Software Reliability Modelling. World

Scientific, Singapore, 1991.

[46] M. Xie and B. Yang. A Study of the Effect of

Imperfect Debugging on Software Development

Cost. IEEE Trans- actions on Software

Engineering, 29(5):471–473, 2003.

[47] S. Yamada, J. Hishitani, and S. Osaki. Software-

Reliability Growth with a Weibull Test-Effort: A

Model & Appli- cation. IEEE Transactions on

Reliability, 42(1):100–106, 1993.

[48] Raina, Palak, and Hitali Shah."Data-Intensive

Computing on Grid Computing Environment."

International Journal of Open Publication and

Exploration (IJOPE), ISSN: 3006-2853, Volume 6,

Issue 1, January-June, 2018.

[49] Hitali Shah.“Millimeter-Wave Mobile

Communication for 5G”. International Journal of

Transcontinental Discoveries, ISSN: 3006-628X,

vol. 5, no. 1, July 2018, pp. 68-74,

https://internationaljournals.org/index.php/ijtd/artic

le/view/102.

[50] S. Yamada, H. Narihisa, and S. Osaki. Optimum

Release Policies for A Software System With A

Scheduled Soft- ware Delivery Time. International

Journal of Systems Science, 15(8):905–914, 1984.

[51] S. Yamada and S. Osaki. Discrete Software

Reliability Growth Models. Applied Stochastic

Models and Data Analysis, 1:65–77, 1985.

[52] S. Yamada and S. Osaki. Optimal Software Release

Poli- cies for A Non-Homogeneous Software Error

Detection Rate Model. Microelectronics

Reliability, 26(4):691–702, 1986.

[53] S. Yamada and S. Osaki. Optimal Software

Release Policies With Simultaneous Cost and

Reliability Require- ments. European Journal of

Operational Research, 31:46– 51, 1987.

[54] B. Yang, H. Hu, and L. Jia. A Study of Uncertainty

in Software Cost and its Impact on Optimal

Software Re- lease Time. IEEE Transactions on

Software Engineering, 34(6):813–825, 2008.

[55] M. C. K. Yang and A. Chao. Reliability-estimation

and Stopping-rules for Software Testing, Based on

Repeated Appearance of Bugs. IEEE Transactions

on Reliability, 44(2):315–321, 1995.

[56] P. Zeephongsekul, C. Xia, and S. Kumar. A

Software Reliability Growth Model Primary Errors

Generating Sec- ondary Errors under Imperfect

Debugging. IEEE Transac- tions on Reliability, R-

43(3):408–413, 1994.

