

International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 2, July-December, 2021, Impact Factor: 7.382

Page | 13

Cloud-Native Development: Review of Best Practices and

Frameworks for Scalable and Resilient Web Applications

Srinivas Chippagiri
1*

, Preethi Ravula
2

1
Member of Technical Staff, Salesforce Inc, Seattle USA

2
PhD Researcher, University of Maryland College Park, MD USA

*Corresponding Author: cvas22 [at] gmail [dot] com

ABSTRACT

Recent innovations in cloud computing have prompted

a sea change away from monolithic systems to cloud-

native architecture, enabling developers to build

adaptable, scalable, and modular applications. Key

technologies such as serverless computing,

containerization, and microservices architecture are

used in cloud-native development, enhancing

operational efficiency, flexibility, and the deployment

speed of applications in dynamic business

environments. While these technologies allow

organizations to build applications with improved

adaptability, scalability and resilience, they also

introduce challenges, including managing complex

service dependencies, diagnosing failures, optimizing

performance, and ensuring security in highly

distributed systems. Moreover, managing stateful

services and ensuring data consistency in the cloud

environment can be particularly challenging. In this

paper, the fundamental principles of cloud-native

development are explored with focus on resilience,

scalability, and elasticity while addressing the

challenges faced by developers. Further, best practices

like continuous integration and deployment (CI/CD),

infrastructure as code (IaC), and security-focused

DevSecOps practices are emphasized. Furthermore, a

review of essential tools and frameworks, such as

Kubernetes, Prometheus, and AWS CloudWatch, that

assist in orchestrating, monitoring, and optimizing

cloud-native systems is provided. The insights provided

aim to guide organizations in adopting cloud-native

technologies to build secure, high-performance

applications.

Keywords—Cloud-native development, microservices

architecture, continuous integration, continuous

deployment (CI/CD)

INTRODUCTION

Technological advancements in cloud computing

infrastructures has led to a sharp rise in cloud-native

applications. Previously, applications are packed with

services that operate in a container as microservices and are

controlled on elastic infrastructure; cloud-native

applications operate in a container-based environment.

Cloud infrastructure administration has never been easy.

Furthermore, orchestration has become a crucial component

of these cloud-native apps as it enables a variety of

functions, including scheduling, scalability, anomaly

detection, resource management, and more[1].

The advent of business digital transformation has made

the migration of enterprise apps to cloud platforms

feasible. With the advancement of cloud computing

technologies, MSA has emerged as a popular web

application design. Complex software systems may be

independently built and implemented using MSA,

which breaks them up into single-function service

components. The previous service-oriented architecture

(SOA) and MSA are comparable. Although it does not

highlight the heavy-duty service bus in the SOA

architecture, it does further develop the servicing

notion. However, since microservices include so many

components, the intricate relationships between

services and the rapid modifications of microservices-

based system versions inherently raise the likelihood of

failure and make issue detection more challenging[2].

Reduced hosting costs and more accessible and

effective computer resources have led to a meteoric rise

in the popularity of cloud-based apps. Performance and

scalability testing and evaluation must be a part of the

development lifecycle for any software system to be as

scalable and effective as possible. This will ensure that

cloud services meet SLA standards and provide the

groundwork for future optimization[3].

The rise of enterprise digital transformation has further

driven the migration of applications to cloud platforms.

The adoption of microservice architecture (MSA),

which divides complex systems into independently

deployable single-function services, has become

prevalent. However, the numerous components,

complex interdependencies, and frequent updates in

MSA environments increase the risk of failures and

complicate problem diagnosis. Addressing these

challenges requires adopting best practices and robust

frameworks to build scalable and resilient cloud-native

systems[4].

Motivation of the Study

The motivation for this study stems from the growing

adoption of cloud-native application development as

organizations increasingly migrate to cloud

environments to enhance scalability, flexibility, and

cost efficiency. Application development and

deployment have been radically altered by the rapid

development of contemporary technologies like

 International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 2, July-December, 2021, Impact Factor: 7.382

Page | 14

serverless computing, containerization, microservices

architectures, and DevOps approaches. However, the

inherent complexity of designing, managing, and

optimizing cloud-native applications necessitates a

comprehensive understanding of best practices,

frameworks, and tools to achieve resilience, performance,

and seamless scalability. This study aims to address these

challenges by reviewing critical aspects of cloud-native

development, enabling organizations to effectively leverage

these advancements to gain a competitive advantage in a

dynamic digital landscape.

Structure of the paper

The structure of this paper is as follows: An introduction to

cloud-native development is given in section II. In section

III, the best practices for building scalable cloud-native web

applications are discussed; in section IV, the frameworks

and tools for cloud-native web applications are discussed;

section V follows in which relevant literature and case

studies are presented; and conclusions and

recommendations for future studies are presented in Section

VI.

Understanding Cloud-Native Development

The process of creating and executing apps that fully

use cloud computing's benefits is known as cloud-

native application development. The practice of

creating apps that are meant to be utilized in the cloud

by the start is known as cloud native development.

Cloud native applications are built using cloud

technologies like container orchestrators, microservices

etc[5].

These applications are typically built using modern

cloud technologies like container orchestrators (e.g.,

Kubernetes), microservices architectures, and serverless

computing, enabling seamless deployment and

management across distributed environments. Cloud-

native applications are characterized by their ability to

automatically adapt to changing workloads, ensuring

optimal performance and cost efficiency[6].

CI/CD pipelines, which promote a culture of

cooperation and fast iteration, are also often used in the

development process. The following programs were

developed specifically for use in the cloud, as shown in

Figure 1:

Fig. 1. A pyramid of modern cloud-native applications

The layers of cloud-native development. At the base is

cloud infrastructure, enabling scalability and flexibility.

Figure 1 mentions the containers for portability and

resource efficiency, followed by microservices, which

ensure modular, independent development[7]. At the top is

DevOps, integrating development and operations for

streamlined, continuous delivery. The characteristics of

cloud-native are discussed below:

Microservices Architecture

The majority of cloud-native apps are constructed as a

collection of loosely linked microservices. Each

microservice handles a particular task and uses well-defined

APIs to interact with other microservices [8]. Software

applications are increasingly being developed and deployed

using the Microservice Architecture (MSA) paradigm,

which consists of a collection of small, granular services

that may be connected via RESTful APIs or other

lightweight communication methods. Microservices are

easily comprehensible, compact components that provide

the services' business capabilities. SOA is the inspiration

for MSA, a cloud-native architectural framework.

Generally, microservices are arranged as a collection of

small, granular services that may be created, tested, and

deployed using various technical stacks across many

platforms [9].

Containerization
A program and all of its dependencies may be safely

housed inside a lightweight and portable container.

Developers may guarantee that their apps work

consistently across development, production, and other

environments by using containers [10].

As a lightweight and effective method of application

packaging, deployment, and management,

containerization has become an important technology

in cloud-native application development. Containers

guarantee that programs execute consistently across

development, production, and other contexts by

providing a consistent runtime environment [11].

 International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 2, July-December, 2021, Impact Factor: 7.382

Page | 15

Serverless Computing

The current trend in business application designs towards

containers and microservices has led to the advent of

serverless computing, sometimes called FaaS, as an

attractive new paradigm for cloud application deployment

[12]. Developers can concentrate on creating code with

serverless computing since it removes the need to manage

servers or scale resources. This method has several

advantages, such as less operational overhead, better

scalability, and cost efficiency[13]. The capacity to scale up

or down is a major plus of serverless architecture.

DevOps
DevOps is a methodology that combines agile and lean

principles with software development. This method

encourages the development and operations teams to work

together to continuously build high-quality software. The

goal of the activities that make up DevOps—i.e.,

continuous planning, integration, deployment, testing, and

monitoring—is to facilitate the rapid and reliable

development, testing, and deployment of software updates

via the promotion of close cooperation among developers,

testers, and operators[8].

Cloud Native Application and requirements

Cloud-native applications are characterized by their basic

properties: scalability and reliability. The scalability of a

CNA depends on its flexibility to modify its capacity by

adding or removing resources, as well as on its ability to

make use of the cloud's on-demand self-service, quick

elasticity, and measurable service. To be resilient, a CNA

must be able to withstand the loss of virtualized resources,

services, or commodity hardware. CNAs are designed with

core and supporting functionality sections to accomplish

both of these goals[14]. To enable individual scalability and

governance in response to demand in each component of

the program, the core is partitioned into fine-grained

microservices. Included in the assistance are methods for

monitoring and management..

Cloud containers are a suitable method for achieving CNA

at the implementation level. Unlike virtual machines,

containers can be started and stopped just like any other

native system process[9]. Additionally, by using groups of

containers across nodes, the management of containers may

be synchronized with that of virtual machines, allowing for

the use of current infrastructure management solutions.

Based on the considerations outlined, the primary

requirements of CNA can be defined as follows:

1) Resilience

 The main objective is to make sure the application is

resilient so it can work and be accessible on the

cloud.

 Scalability takes operating cost reduction and load

variance into account.

 Redundant resources are often used to improve

cloud resilience.

 A strategic business choice must be made to

strike a balance between cost reduction and

redundancy.

2) Elasticity

 CNA should adjust capacity dynamically by

adding or removing resources to meet QoS

requirements during load variations.

 This ensures avoidance of over-provisioning

and under-provisioning.

 Cloud-native applications must leverage cloud

capabilities such as measured services, on-

demand self-service, and rapid elasticity[15].

To build an application that is both functional and

accessible in the cloud, resilience must be achieved

first. Scalability, on the other hand, deals with

variations in demand and the reduction of operating

costs. The use of redundant resources is a common

practice for cloud resilience [16]. It is a business choice

to determine the trade-off between reducing operating

costs and redundancy.

Cloud-native application characteristics

These following are the main characteristics of cloud-

native applications:

Service-based Architectures

The building blocks of cloud-native apps are

collections of independent (micro)services.

Independent creation and operation of each service is

made possible since each service in an application

exists in its own right. Concurrently, services often

communicate with one another and with other services

inside an application; these services are found by taking

use of capabilities offered by the application

runtime[17][18]. This opens the door to building cloud-

native apps and composing services.

API-based Interactions

API-based service-to-service connections are used in

cloud-native applications. Each service in an

application exposes its capabilities via an API, and each

service in turn connects to and uses the APIs of the

other services in the application.

The APIs used in cloud-native applications should all

adhere to widely recognized standards, such as REST

over HTTP, and each component should have its own

API.8.

Infrastructure as Code

Every aspect of cloud-native apps, including

deployment, administration, scaling, and monitoring, is

highly automated. Infrastructure as code, or machine-

readable files that enable the specification of the

intended configuration for an application and its

components, is usually used to accomplish such

automation ..

 International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 2, July-December, 2021, Impact Factor: 7.382

Page | 16

Key Features of Cloud-Native Applications:

This section outlines the essential aspects of cloud-native

applications, focusing on their key features and

functionalities.

Performance:

The public cloud's built-in capabilities, which may

outperform their non-native counterparts in terms of

performance. You may, for instance, manage an I/O system

that has autoscaling and load-balancing capabilities.

Efficiency
Cloud-native apps should make better use of underlying

resources by using cloud-native capabilities and APIs.. That

results in either reduced operational expenses or improved

performance.

Cost
It usually costs less to operate applications that are more

efficient. You may save money by making better use of the

resources you have, as cloud providers charge you monthly

according to your consumption.

Scalability: The native cloud APIs provide you immediate

access to the platform's autoscaling and load-balancing

capabilities when you develop your apps [19].

Best Practices For Building Scalable Cloud-Native Web

Applications

Building scalable cloud-native web applications

necessitates following best practices to ensure resilience,

maintainability, and the ability to handle growing user

demands effectively. These practices include designing for

elasticity, leveraging microservices architecture,

implementing robust monitoring and logging systems,

optimizing performance through caching and load

balancing, ensuring security at every layer, and

adopting automation for CI/CD. Scalable web

applications must efficiently manage increasing traffic

while maintaining high performance, reliability,

security, and cost-effectiveness.

BEST PRACTICES FOR BUILDING SCALABLE

CLOUD-NATIVE WEB APPLICATIONS

Continuous Integration and Continuous Deployment

(CI/CD)

Automatic software integration is a key component of

continuous integration, which typically entails

constructing and testing modified source code at

regular intervals. The term "frequency" refers to the

regularity with which software is developed and tested;

for instance, with each version control commit.0.

Software must be constantly changeable and

deployable, and Continuous Integration is a part of

Continuous Delivery. The majority of the time, this

need is met by implementing an automated staging

environment[20].

Continuous Deployment ensures that software is

immediately deployed to production as soon as it is

committed to the version control system branches

specific to production environments and passes the

automated tests to be ready for production[21].

Deployment and Continuous Delivery are often used

interchangeably and might be confused, but it's crucial

to distinguish between the terms in academic settings.

Figure 2 illustrates the connections between

Continuous Integration, Deployment, and Delivery.

Fig. 2. Relations of Continuous Integration, Delivery and Deployment

Companies cannot hence implement Continuous

Deployment without Continuous Integration and Delivery

systems[22].

Infrastructure as code

Infrastructure as code makes it possible to distribute

software components continuously and automatically

throughout their whole lifespan, including installation,

starting, stopping, and terminating. Repeatable end-to-

end deployment automation may be created by

specifying an application's infrastructure and

components in deployable models that are reusable and

maintained [23][24]. The following are some

advantages of cloud-native development:

 International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 2, July-December, 2021, Impact Factor: 7.382

Page | 17

 Scalability and Flexibility: IaC guarantees that

applications can manage a range of workloads by

enabling developers to swiftly scale infrastructure up

or down in response to demand [25].

 Consistency and Reproducibility: IaC lessens the

likelihood of configuration drift by ensuring that

infrastructure is reliably distributed across

environments, including production, testing, and

development [26].

Monitoring and Logging

An important part of cloud-native development is

monitoring and logging, which allow developers to keep

tabs on the availability, performance, and dependability of

infrastructure and apps. Teams are able to recognize and

resolve problems more rapidly with the use of monitoring

and logging, which give insight into the system's health

[27]. Several benefits in cloud-native development,

including:

 Use Monitoring Tools: Use monitoring tools, such

as Prometheus, Grafana, or AWS CloudWatch, to

collect and visualize metrics related to application

performance and infrastructure health.

 Set up Alerts: Define alerting rules based on your

SLIs and SLOs to notify teams of any issues that

require immediate attention[3].

 Monitor Application Dependencies: Monitor the

performance of external dependencies, such as

databases or third-party services, to identify and

mitigate potential issues.

Orchestration
When there is a certain sequence that has to be followed,

orchestration becomes necessary. In microservice

orchestration, a service consumer or integration hub acts as

a middleman to coordinate several services. Both

production and testing environments make extensive use of

Kubernetes [28].

Orchestration technologies used in cloud-native settings,

like Kubernetes, also have security implications. Securing

the Kubernetes control plane, establishing secure

configuration processes, and safeguarding essential

components like the data store are all part of this.

Additionally, it entails safeguarding container orchestration

and deployment procedures to avoid unauthorized access or

modifications to deployments[29].

DevSecOps Practices

Embracing security principles across the development,

deployment, and operations lifecycle is crucial for cloud-

native service security. It highlights the importance of

security automation, Continuous Security Testing, and

security monitoring as components of the DevSecOps

methodology, and how they should be integrated into the

development process throughout [30].

Frameworks And Tools For Cloud-Native Web

Applications

Some of the most important frameworks for developing

cloud-native web applications are Kubernetes and

Docker, which are used for container orchestration and

containerization, respectively, and Spring Boot, which

is used for constructing microservices. These

frameworks streamline scalability, reliability, and

efficient resource management in cloud environments.

Microservices Frameworks

A wide variety of frameworks are available for use with

various computer languages. Four separate

microservices frameworks were chosen for the toll

system's implementation: Go Micro (Go), Molecular

(JavaScript with Node.js), Spring Boot/Spring Cloud

(Java), and others [31].

 Distributed system development using Go's

built-in support for RPC and event-driven

communication is made easier with Go Micro.

This framework is offered as a collection of

modular components that may be added or

removed from a project according to the needs

of the application. Application Development

Frameworks Based on Microservices: Assessing

and Contrasting[32].

 Molecular is a Node.js runtime–based

microservice framework for JavaScript that is

based on Chrome’s V8 JavaScript engine.

Making event-driven apps with reduced latency

was the driving concept behind this framework's

creation. Gateways, databases, serialization,

and other functionalities are all available as

pluggable modules from Molecular. The

transporter, the service, and the service broker

are the three primary parts of the

framework[33].

 The Spring ecosystem includes the projects

Spring Boot and Spring Cloud. In contrast to

Spring Boot, which is an opinionated method

for developing standalone Spring applications,

Spring Cloud is a collection of tools for rapidly

developing several common patterns in

distributed systems, including configuration

management, service discovery, and more. That

being said, Spring Boot is more of a full-stack

development environment than anything tailored

for creating microservices [34].

Kubernetes and Container Orchestration

Frameworks

Container orchestration frameworks like Kubernetes

have become essential for deploying and managing

cloud-native applications. Here’s an overview of

Kubernetes and related frameworks:

 Kubernetes (K8s): Containerized workloads

and services may be easily managed using

Kubernetes, an adaptable, scalable, and open-

source platform that allows declarative setup

and automation. Its rise is quick, and its

environment is extensive. Kubernetes promotes

 International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 2, July-December, 2021, Impact Factor: 7.382

Page | 18

its services, support, and software to a large

audience[35]. Application bundling and running are

made easier using containers. If you're looking for a

management solution that can make scaling your

workload with containers easier, look no further.

You may use the same Docker images with

Kubernetes[36].

Docker Swarm Mode: Although Docker is mostly used for

creating virtualized containers on individual computers, it

also offers a platform for orchestrating containers called

Docker Swarm Mode. This platform offers a set of tools for

managing a cluster of containers. As the official clustering

solution for Docker containers, it benefits from being

deeply ingrained in the Docker ecosystem and making use

of its own API. A swarm is an ensemble of Docker hosts

operating in swarm mode[37].

LITERATURE REVIEW

A survey of the research on Cloud-Native Development

with an emphasis on Highly Available and Scalable Web

Apps is provided in this section. Table I provides a brief

description of the studies that were examined.

In this study, Brunner et al. (2015) provide an example of a

commercial application that is operating as a CAN and

provide experimental proof of the design's benefits.

Moreover, they introduce Dynamite, a containerized CNA

application auto-scaler. There is little extra engineering

required for CNA, according on our testing conducted on a

Vagrant host, a private OpenStack installation, and a public

Amazon EC2 testbed[14].

In this study, Chang and Fink (2017) showcase a tool that

uses cloud execution log visualizations for a different

purpose: to help with program comprehension and to create

application documentation based on runtime data. A new

timeline visualization, an improved way to summaries and

display the results of many JSON objects, and interaction

approaches to make moving between functions easier are all

part of our solution. The composition, performance, data

flow, and data structure of a serverless cloud application are

all explained by these characteristics taken together. They

provide some preliminary user comments from a

number of knowledgeable developers who contributed

to the tool's conception and creation[38].

In this study, Kratzke and Peinl (2016) looked at

industrial cloud standards, public CSP, and cloud-

native application design approaches. According to

every conclusion, the majority of cloud service

categories seem to encourage vendor lock-in scenarios,

which might be particularly troublesome for business

structures. At first, this can seem discouraging. On the

other hand, provided a reference model for cloud-native

apps that only use a limited number of highly

standardized IaaS services. Cloud technology may be

codified using the reference model. It may direct

research and development, adoption, categorization,

and technology identification procedures for cloud-

native applications and enterprise architectural

engineering approaches that are mindful of vendor

lock-in[9].

In this research, Astyrakakis et al. (2019) introduces a

novel, fully automated tool for OpenStack Kubernetes

cluster deployment and monitoring. They also provided

a solution that can automatically validate cloud-native

apps. Comparing the assessment of the suggested

toolbox to alternative manual methods, Kubernetes

clusters were deployed with very short overall

timeframes. An application that was containerized and

had the Kubernetes HPA enabled took around 11

minutes to validate, whereas an application that was

containerized and had the HPA deactivated took about

3 minutes[39].

In this study, Imadali and Bousselmi (2018) provide a

software platform that is native to the cloud, enabling

MNOs to make their networking resources, mobile

services, and cloud computing available to 5GaaS over-

the-top companies.

They also detail the prototype's standard-based viability

and provide our open-source Cloud Native VNF API

design, which is an implementation of the suggested

design principles[40]

Table : 1 Presents the Comparative Table based on Cloud-Native Development and Frameworks for Scalable and

Resilient Web Applications

Reference Study On Methodology Key Findings Challenges Limitations

[14] Case study of a

business

application

running as a

Cloud-Native

Application

(CNA)

Experimental

evaluation of CNA

advantages using

Dynamite auto-

scaler on Vagrant,

OpenStack, and

Amazon EC2

testbeds.

Demonstrated CNA

requires minimal

additional

engineering, and

Dynamite enhances

auto-scaling for

containerised

applications.

Resource

management in

varied cloud

environments.

Limited scope to

specific

experimental

testbeds (e.g.,

Vagrant,

OpenStack,

Amazon EC2).

[38] Visualisation of

cloud execution

logs for program

understanding

Developed a tool

with timeline

visualisation,

JSON

Improved

understanding of

serverless cloud

applications'

Ensuring

usability across

diverse cloud

applications.

Initial feedback

limited to expert

developers;

broader validation

 International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 2, July-December, 2021, Impact Factor: 7.382

Page | 19

and

documentation

generation.

summarisation,

and interaction

techniques for

runtime data

analysis.

composition,

performance, and data

flow with positive

feedback from expert

developers.

not covered.

[9] Design

principles,

public cloud

services, and

industrial cloud

standards for

cloud-native

apps.

Developed a

reference model

relying on

standardised IaaS

services to address

vendor lock-in

concerns.

Highlighted vendor

lock-in risks in public

cloud services and

proposed a model for

codifying cloud

technologies and

guiding enterprise

architectures.

Overcoming

vendor lock-in in

real-world

implementations.

Focuses on IaaS

and lacks detailed

discussion of PaaS

and SaaS contexts.

[39] Automated

deployment and

monitoring of

Kubernetes

clusters over

OpenStack.

Developed and

evaluated an

automated tool for

Kubernetes

deployment and

validation with

HPA-

enabled/disabled

setups.

Achieved faster

Kubernetes cluster

deployment times and

efficient validation

processes with notable

time reductions

compared to manual

approaches.

Adapting the

tool for larger,

more complex

deployments.

Limited evaluation

scope to

Kubernetes

clusters and

specific

configurations.

[40] Cloud-native

software

platform

enabling MNOs

to expose assets

for 5GaaS.

Developed an

open-source Cloud

Native VNF API

design and

evaluated

feasibility from a

standards

perspective.

Provided a viable

prototype for 5GaaS

with a design enabling

integration of

networking resources,

mobile services, and

cloud computing.

Balancing

standardisation

and innovation

requirements.

Focused on 5GaaS-

specific use cases;

broader

applicability to

other industries not

demonstrated.

CONCLUSION AND FUTURE WORK

Advancements in cloud-native application development

enables the design, development, and implementation of

cutting-edge applications that fully leverage cloud

computing capabilities.

Scalability, reliability, and cost-effectiveness are attained

by these systems by employing technologies such as,

microservices, containerization, and serverless computing

integrated with DevOps procedures and automation.

Implementing best practices, including CI/CD,

infrastructure as code, and robust monitoring, ensures

streamlined operations and rapid innovation. Tools such as

Kubernetes, Docker, and Spring Boot, developers help

addressing the complexities of distributed environments

while delivering highly performant and adaptive solutions.

Future research in cloud-native development can focus on

enhancing scalability and resilience through advanced AI-

driven orchestration and predictive resource allocation.

Integrating cutting-edge technologies, such as edge

computing and 5G, can further optimize cloud-native

applications for low-latency use cases.

Moreover, investigation of zero-trust security models and

the application of blockchain for secure microservices

communication in improving the security posture of cloud-

native environments can be explored in future studies.

REFERENCES

[1]. R. Chowdhury, C. Talhi, H. Ould-Slimane,

and A. Mourad, ―A Framework for

Automated Monitoring and Orchestration of

Cloud-Native applications,‖ in 2020

International Symposium on Networks,

Computers and Communications (ISNCC),

IEEE, Oct. 2020, pp. 1–6. doi:

10.1109/ISNCC49221.2020.9297238.

[2]. J. Qiu, Q. Du, K. Yin, S. Zhang, and C. Qian,

―applied sciences A Causality Mining and

Knowledge Graph Based Method of Root

Cause Diagnosis for Performance Anomaly in

Cloud Applications,‖ 2020, doi:

10.3390/app10062166.

[3]. T. Atmaca, T. Begin, A. Brandwajn, and H.

Castel-Taleb, ―Performance Evaluation of

Cloud Computing Centers with General

Arrivals and Service,‖ IEEE Trans. Parallel

Distrib. Syst., vol. 27, no. 8, pp. 2341–2348,

2016, doi: 10.1109/TPDS.2015.2499749.

[4]. P. Cappaert and A. Redei, ―A scalable cloud

native platform for interactive museum

exhibits,‖ in EPiC Series in Computing, 2020.

doi: 10.29007/6b3j.

[5]. A. S. Ramakrishna Garine, Rajeev Arora,

Anoop Kumar, ―Advanced Machine Learning

for Analyzing and Mitigating Global Supply

Chain Disruptions during COVID-19,‖

 International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 2, July-December, 2021, Impact Factor: 7.382

Page | 20

SSRN, pp. 1–6, 2020.

[6]. A. Kumar, R. Vij, M. Gupta, S. Sharma, and S.

Singh, ―Risk assessment of exposure to radon

concentration and heavy metal analysis in

drinking water samples in some areas of Jammu

& Kashmir, India,‖ J. Radioanal. Nucl.

Chem., vol. 304, no. 3, pp. 1009–1016, Jun. 2015,

doi: 10.1007/s10967-015-3967-y.

[7]. A. Kumar, R. Garine, A. Soni, R. K. Arora, R. C.

Dublin, and I. Researcher, ―Leveraging AI for E-

Commerce Personalization : Insights and

Challenges from 2020,‖ pp. 1–6, 2020.

[8]. M. Waseem, P. Liang, and M. Shahin, ―A

Systematic Mapping Study on Microservices

Architecture in DevOps,‖ J. Syst. Softw., vol.

170, 2020, doi: 10.1016/j.jss.2020.110798.

[9]. N. Kratzke and R. Peinl, ―ClouNS-a Cloud-Native

Application Reference Model for Enterprise

Architects,‖ in Proceedings - IEEE International

Enterprise Distributed Object Computing

Workshop, EDOCW, 2016. doi:

10.1109/EDOCW.2016.7584353.

[10]. C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi,

―Cloud container technologies: A state-of-the-art

review,‖ IEEE Trans. Cloud Comput., 2019, doi:

10.1109/TCC.2017.2702586.

[11]. C. Pahl, ―Containerization and the PaaS Cloud,‖

IEEE Cloud Comput., 2015, doi:

10.1109/MCC.2015.51.

[12]. R. A. P. Rajan, ―A review on serverless

architectures-Function as a service (FaaS) in

cloud computing,‖ Telkomnika

(Telecommunication Comput. Electron. Control.,

vol. 18, no. 1, pp. 530–537, 2020, doi:

10.12928/TELKOMNIKA.v18i1.12169.

[13]. I. Baldini et al., ―Serverless computing: Current

trends and open problems,‖ in Research Advances

in Cloud Computing, 2017. doi: 10.1007/978-981-

10-5026-8_1.

[14]. S. Brunner, M. Blochlinger, G. Toffetti, J.

Spillner, and T. M. Bohnert, ―Experimental

Evaluation of the Cloud-Native Application

Design,‖ Proc. - 2015 IEEE/ACM 8th Int. Conf.

Util. Cloud Comput. UCC 2015, pp. 488–493,

2015, doi: 10.1109/UCC.2015.87.

[15]. R. Goyal, ―THE ROLE OF BUSINESS

ANALYSTS IN INFORMATION

MANAGEMENT PROJECTS,‖ Int. J. Core Eng.

Manag., vol. 6, no. 9, pp. 76–86, 2020.

[16]. G. Toffetti, S. Brunner, M. Blöchlinger, J.

Spillner, and T. M. Bohnert, ―Self-managing

cloud-native applications: Design,

implementation, and experience,‖ Futur. Gener.

Comput. Syst., 2017, doi:

10.1016/j.future.2016.09.002.

[17]. Jana. I, Oprea. A, ―AppMine: Behavioral

Analytics for Web Application Vulnerability

Detection,‖ arxiv, 2019, doi:

10.48550/arXiv.1908.01928.

[18]. M. Wurster, U. Breitenbücher, A. Brogi, F.

Leymann, and J. Soldani, ―Cloud-native Deploy-

ability : An Analysis of Required Features of

Deployment Technologies to Deploy

Arbitrary Cloud-native Applications,‖ no.

Closer, pp. 171–180, 2020, doi:

10.5220/0009571001710180.

[19]. D. S. Linthicum, ―Cloud-Native Applications

and Cloud Migration: The Good, the Bad, and

the Points between,‖ IEEE Cloud Comput.,

2017, doi: 10.1109/MCC.2017.4250932

[20]. M. Z. Hasan, R. Fink, M. R. Suyambu, and

M. K. Baskaran, ―Assessment and

improvement of elevator controllers for

energy efficiency,‖ in Digest of Technical

Papers - IEEE International Conference on

Consumer Electronics, 2012. doi:

10.1109/ISCE.2012.6241747.

[21]. M. Z. Hasan, R. Fink, M. R. Suyambu, and

M. K. Baskaran, ―Assessment and

improvement of intelligent controllers for

elevator energy efficiency,‖ in IEEE

International Conference on Electro

Information Technology, 2012. doi:

10.1109/EIT.2012.6220727.

[22]. A. Hakli, D. Taibi, and K. Systa, ―Towards

cloud native continuous delivery: An

industrial experience report,‖ Proc. - 11th

IEEE/ACM Int. Conf. Util. Cloud Comput.

Companion, UCC Companion 2018, pp. 314–

320, 2018, doi: 10.1109/UCC-

Companion.2018.00074.

[23]. M. Rodriguez-sanchez, ―Cloud native

Application Development - Best Practices :

Studying best practices for developing cloud

native applications , including

containerization , microservices , and

serverless computing,‖ vol. 1, pp. 18–27.

[24]. M. Z. Hasan, R. Fink, M. R. Suyambu, M. K.

Baskaran, D. James, and J. Gamboa,

―Performance evaluation of energy efficient

intelligent elevator controllers,‖ in IEEE

International Conference on Electro

Information Technology, 2015. doi:

10.1109/EIT.2015.7293320.

[25]. M. Wurster et al., ―The essential deployment

metamodel: a systematic review of

deployment automation technologies,‖ in

Software-Intensive Cyber-Physical Systems,

2020. doi: 10.1007/s00450-019-00412-x.

[26]. V. V. Kumar, F. W. Liou, S. N. Balakrishnan,

and V. Kumar, ―Economical impact of RFID

implementation in remanufacturing: a Chaos-

based Interactive Artificial Bee Colony

approach,‖ J. Intell. Manuf., 2015, doi:

10.1007/s10845-013-0836-9.

[27]. V. Kumar and F. T. S. Chan, ―A superiority

search and optimisation algorithm to solve

RFID and an environmental factor embedded

closed loop logistics model,‖ Int. J. Prod.

Res., vol. 49, no. 16, 2011, doi:

10.1080/00207543.2010.503201.

[28]. V. V. Kumar, M. K. Pandey, M. K. Tiwari,

 International Journal of New Media Studies (IJNMS), ISSN: 2394-4331

Volume 8 Issue 2, July-December, 2021, Impact Factor: 7.382

Page | 21

and D. Ben-Arieh, ―Simultaneous optimization of

parts and operations sequences in SSMS: A chaos

embedded Taguchi particle swarm optimization

approach,‖ J. Intell. Manuf., 2010, doi:

10.1007/s10845-008-0175-4.

[29]. V. V Kumar, ―An interactive product

development model in remanufacturing

environment : a chaos-based artificial bee colony

approach,‖ Missouri University of Science and

Technology, 2014. [Online]. Available:

https://scholarsmine.mst.edu/cgi/viewcontent.cgi?

article=8243&context=masters_theses

[30]. V. V Kumar, M. Tripathi, M. K. Pandey, and M.

K. Tiwari, ―Physical programming and conjoint

analysis-based redundancy allocation in multistate

systems: A Taguchi embedded algorithm

selection and control (TAS&C) approach,‖

Proc. Inst. Mech. Eng. Part O J. Risk Reliab., vol.

223, no. 3, pp. 215–232, Sep. 2009, doi:

10.1243/1748006XJRR210.

[31]. V. V. Kumar, S. R. Yadav, F. W. Liou, and S. N.

Balakrishnan, ―A digital interface for the part

designers and the fixture designers for a

reconfigurable assembly system,‖ Math. Probl.

Eng., 2013, doi: 10.1155/2013/943702.

[32]. H. DInh-Tuan, M. Mora-Martinez, F. Beierle, and

S. R. Garzon, ―Development Frameworks for

Microservice-based Applications: Evaluation and

Comparison,‖ in ACM International Conference

Proceeding Series, 2020. doi:

10.1145/3393822.3432339.

[33]. V. V. Kumar, F. T. S. Chan, N. Mishra, and V.

Kumar, ―Environmental integrated closed loop

logistics model: An artificial bee colony

approach,‖ in SCMIS 2010 - Proceedings of 2010

8th International Conference on Supply Chain

Management and Information Systems: Logistics

Systems and Engineering, 2010.

[34]. V. V. Kumar, A. Sahoo, and F. W. Liou, ―Cyber-

enabled product lifecycle management: A multi-

agent framework,‖ in Procedia Manufacturing,

2019. doi: 10.1016/j.promfg.2020.01.247.

[35]. Eshwari H M, Rekha B S, and G. N.

Srinivasan, ―Hybrid Cloud Technologies:

Dockers, Containers and Kubernetes,‖ Int.

Res. J. Eng. Technol. , vol. 7, no. 6, pp. 7628–

7634, 2020.

[36]. V. Kumar, V. V. Kumar, N. Mishra, F. T. S.

Chan, and B. Gnanasekar, ―Warranty failure

analysis in service supply Chain a multi-agent

framework,‖ in SCMIS 2010 - Proceedings of

2010 8th International Conference on Supply

Chain Management and Information Systems:

Logistics Systems and Engineering, 2010.

[37]. V. Kumar, M. Tripathi, S. Tyagi, and M. K.

Tiwari, ―An integrated real time optimization

approach (IRTO) for physical programming

based redundancy allocation problem,‖ Proc.

3rd Int. Conf. Reliab. Saf. …, 2007.

[38]. K. S. P. Chang and S. J. Fink, ―Visualizing

serverless cloud application logs for program

understanding,‖ in Proceedings of IEEE

Symposium on Visual Languages and

Human-Centric Computing, VL/HCC, 2017.

doi: 10.1109/VLHCC.2017.8103476.

[39]. N. Astyrakakis, Y. Nikoloudakis, I.

Kefaloukos, C. Skianis, E. Pallis, and E. K.

Markakis, ―Cloud-Native Application

Validation & Stress Testing through a

Framework for Auto-Cluster Deployment,‖ in

2019 IEEE 24th International Workshop on

Computer Aided Modeling and Design of

Communication Links and Networks

(CAMAD), 2019, pp. 1–5. doi:

10.1109/CAMAD.2019.8858164.

[40]. S. Imadali and A. Bousselmi, ―Cloud native

5g virtual network functions: Design

principles and use cases,‖ in Proceedings - 8th

IEEE International Symposium on Cloud and

Services Computing, SC2 2018, 2018. doi:

10.1109/SC2.2018.00019.

